174 research outputs found

    Disentangling synergistic disease dynamics: Implications for the viral biocontrol of rabbits

    Get PDF
    European rabbits (Oryctolagus cuniculus) have been exposed to rabbit haemorrhagic disease virus (RHDV) and myxoma virus (MYXV) in their native and invasive ranges for decades. Yet, the long‐term effects of these viruses on rabbit population dynamics remain poorly understood.In this context, we analysed 17 years of detailed capture–mark–recapture data (2000–2016) from Turretfield, South Australia, using a probabilistic state‐space hierarchical modelling framework to estimate rabbit survival and epidemiological dynamics.While RHDV infection and disease‐induced death were most prominent during annual epidemics in winter and spring, we found evidence for continuous infection of susceptible individuals with RHDV throughout the year. RHDV‐susceptible rabbits had, on average, 25% lower monthly survival rates compared to immune individuals, while the average monthly force of infection in winter and spring was ∼38%. These combined to result in an average infection‐induced mortality rate of 69% in winter and spring.Individuals susceptible to MYXV and immune to RHDV had similar survival probabilities to those having survived infections from both viruses, whereas individuals susceptible to both RHDV and MYXV had higher survival probabilities than those susceptible to RHDV and immune to MYXV. This suggests that MYXV may reduce the future survival rates of individuals that endure initial MYXV infection.There was no evidence for long‐term changes in disease‐induced mortality and infection rates for either RHDV or MYXV.We conclude that continuous, year‐round virus perpetuation (and perhaps heterogeneity in modes of transmission and infectious doses during and after epidemics) acts to reduce the efficiency of RHDV and MYXV as biocontrol agents of rabbits in their invasive range. However, if virulence can be maintained as relatively constant through time, RHDV and MYXV will likely continue realizing strong benefits as biocontrol agents

    Relationship between early development of spelling and reading

    Get PDF
    The research reported in this thesis examined the relationship between beginning spelling and reading. More specifically, it focussed on the relationship between the development of early reading and spelling in a context where the approach to early reading instruction includes systematic phonological awareness and decoding instruction. A critical assumption made by proponents of developmental early literacy models is that transfer of skills and knowledge from reading to spelling will occur spontaneously and without formal instruction (Frith, 1980). By contrast instruction-centred approaches make the assumption that there are critical pre-requisite skills that can and should be taught explicitly (Carnine, Silbert & Kameenui, 1997). The difference between these approaches is highlighted in the treatment of invented spelling, a popular activity in Western Australian junior primary classes. A series of studies was undertaken to examine the effect on invented and standard spelling performance of teaching Year 1 children phonological awareness and the strategy of sounding out words. Data were gathered from a range of settings using different research tools. The relationship between phonological awareness and beginning reading and spelling performance was explored initially through a single case study. A post-hoc study was then undertaken with a cohort of students who had received systematic decoding instruction to examine whether proficiency in the decoding of nonwords was related to spelling performance. This permitted an analysis of common sub-skills of decoding and encoding. In the main study the effect on different aspects of reading and spelling performance of using Let\u27s Decode, an approach that includes explicit phonological awareness and systematic decoding instruction, was investigated. In addition, an analysis was made of whether students who received explicit instruction in skills known to contribute to beginning reading and spelling produced superior invented spelling samples. A qualitative analysis was made of the. pre and post invented spelling tests of two pairs of students from the control and intervention groups matched on invented spelling and phonological awareness skills at the beginning of the year, and re tested at the end of Year 1. The final research question involved a single-subject research design to examine the effect of explicit instruction in isolating phonemes in words and prompts to \u27listen for sounds\u27 prior to, and during, the process of spelling words. The single case study revealed a child who was regarded as a competent speller and reader but who could only read words in a familiar context and who had developed a strategy for spelling words based on copying an adult model. This was interpreted as evidence supporting the need for phonological awareness instruction as a pre-requisite for spelling. The post-hoc analysis of a class of students who had received systematic decoding instruction showed that no student classified as a \u27good decoder\u27 could also be classified as a \u27poor speller\u27. This result was considered evidence of a strong link between the phonological knowledge that is required to decode and the role of alphabetic knowledge in spelling. The main study revealed phonological awareness and systematic decoding instruction was associated with superior invented and conventional spelling and reading performance on all reading and spelling measures. Of particular importance was the finding that students who commenced the study with very weak phonological awareness and who subsequently received systematic phonological and decoding instruction showed greater gains in invented spelling than matched students in the control condition. The single subject design showed the effectiveness of phonological awareness individualised instruction on invented spelling for weak students from both intervention and control conditions. It was concluded that the ability to invent spelling is improved when students receive explicit instruction in phonological awareness and systematic decoding but that some students, namely those with persistent weakness in phonological awareness, also require explicit prompts to apply their alphabetic knowledge to spelling words. The implications for instruction of these findings are discussed

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Invasive Predators Deplete Genetic Diversity of Island Lizards

    Get PDF
    Invasive species can dramatically impact natural populations, especially those living on islands. Though numerous examples illustrate the ecological impact of invasive predators, no study has examined the genetic consequences for native populations subject to invasion. Here we capitalize on a natural experiment in which a long-term study of the brown anole lizard (Anolis sagrei) was interrupted by rat invasion. An island population that was devastated by rats recovered numerically following rat extermination. However, population genetic analyses at six microsatellite loci suggested a possible loss of genetic diversity due to invasion when compared to an uninvaded island studied over the same time frame. Our results provide partial support for the hypothesis that invasive predators can impact the genetic diversity of resident island populations

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Pacific island regional preparedness for El Niño

    Get PDF
    The El Niño Southern Oscillation (ENSO) cycle is often blamed for disasters in Pacific island communities. From a disaster risk reduction (DRR) perspective, the challenges with the El Niño part of the ENSO cycle, in particular, are more related to inadequate vulnerability reduction within development than to ENSO-induced hazard influences. This paper analyses this situation, filling in a conceptual and geographic gap in El Niño-related research, by reviewing El Niño-related preparedness (the conceptual gap) for Pacific islands (the geographic gap). Through exploring El Niño impacts on Pacific island communities alongside their vulnerabilities, resiliences, and preparedness with respect to El Niño, El Niño is seen as a constructed discourse rather than as a damaging phenomenon, leading to suggestions for El Niño preparedness as DRR as part of development. Yet the attention which El Niño garners might bring resources to the Pacific region and its development needs, albeit in the short term while El Niño lasts. Conversely, the attention given to El Niño could shift blame from underlying causes of vulnerability to a hazard-centric viewpoint. Instead of focusing on one hazard-influencing phenomenon, opportunities should be created for the Pacific region to tackle wider DRR and development concerns

    SNi from SN2: a front-face mechanism ‘synthase’ engineered from a retaining hydrolase

    Get PDF
    SNi or SNi-like mechanisms, in which leaving group departure and nucleophile approach occur on the same ‘front’ face, have been observed previously experimentally and computationally in both the chemical and enzymatic (glycosyltransferase) substitution reactions of α-glycosyl electrophiles. Given the availability of often energetically comparable competing pathways for substitution (SNi vs SN1 vs SN2) the precise modulation of this archetypal reaction type should be feasible. Here, we show that the drastic engineering of a protein that catalyzes substitution, a retaining β-glycosidase (from Sulfolobus solfataricus SSβG), apparently changes the mode of reaction from “SN2” to “SNi”. Destruction of the nucleophilic Glu387 of SSβG-WT through Glu387Tyr mutation (E387Y) created a catalyst (SSβG-E387Y) with lowered but clear transglycosylation substitution activity with activated substrates, altered substrate and reaction preferences and hence useful synthetic (‘synthase’) utility by virtue of its low hydrolytic activity with unactivated substrates. Strikingly, the catalyst still displayed retaining β stereoselectivity, despite lacking a suitable nucleophile; pH-activity profile, mechanism-based inactivators and mutational analyses suggest that SSβG-E387Y operates without either the use of nucleophile or general acid/base residues, consistent with a SNi or SNi-like mechanism. An x-ray structure of SSβG-E387Y and subsequent metadynamics simulation suggest recruitment of substrates aided by a π-sugar interaction with the introduced Tyr387 and reveal a QM/MM free energy landscape for the substitution reaction catalyzed by this unnatural enzyme similar to those of known natural, SNi-like glycosyltransferase (GT) enzymes. Proton flight from the putative hydroxyl nucleophile to the developing p-nitrophenoxide leaving group of the substituted molecule in the reactant complex creates a hydrogen bond that appears to crucially facilitate the mechanism, mimicking the natural mechanism of SNi-GTs. An oxocarbenium ion-pair minimum along the reaction pathway suggests a step-wise SNi-like DN*ANss rather than a concerted SNi DNAN mechanism. This first observation of a front face mechanism in a β-retaining glycosyl transfer enzyme highlights, not only that unusual SNi reaction pathways may be accessed through direct engineering of catalysts with suitable environments, but also suggests that ‘β-SNi’ reactions are also feasible for glycosyl transfer enzymes and the more widespread existence of SNi or SNi-like mechanism in nature

    Environmental effects and individual body condition drive seasonal fecundity of rabbits: identifying acute and lagged processes

    Get PDF
    The reproduction of many species is determined by seasonally-driven resource supply. But it is difficult to quantify whether the fecundity is sensitive to short- or long-term exposure to environmental conditions such as rainfall that drive resource supply. Using 25 years of data on individual fecundity of European female rabbits, Oryctolagus cuniculus, from semiarid Australia, we investigate the role of individual body condition, rainfall and temperature as drivers of seasonal and long-term and population-level changes in fecundity (breeding probability, ovulation rate, embryo survival). We built distributed lag models in a hierarchical Bayesian framework to account for both immediate and time-lagged effects of climate and other environmental drivers, and possible shifts in reproduction over consecutive seasons. We show that rainfall during summer, when rabbits typically breed only rarely, increased breeding probability immediately and with time lags of up to 10 weeks. However, an earlier onset of the yearly breeding period did not result in more overall reproductive output. Better body condition was associated with an earlier onset of breeding and higher embryo survival. Breeding probability in the main breeding season declined with increased breeding activity in the preceding season and only individuals in good body condition were able to breed late in the season. Higher temperatures reduce breeding success across seasons. We conclude that a better understanding of seasonal dynamics and plasticity (and their interplay) in reproduction will provide crucial insights into how lagomorphs are likely to respond and potentially adapt to the influence of future climate and other environmental change.Konstans Wells, Robert B. O’Hara, Brian D. Cooke, Greg J. Mutze, Thomas A.A. Prowse, Damien A. Fordha
    corecore